From our Windows Vista performance guide:

Except in a few cases where 64-bit code is clearly faster, the primary purpose for Vista x64's existence is to resolve the problems of 32-bit addressing space, and we're just not at the point yet where even most enthusiasts are pushing that limit. Once applications begin to push the 2GB addressing space limitation of Win32 (something we expect to hit very soon with games) or total systems need more than 4GB of RAM, then Vista x64 in its current incarnation would be a good choice.

For some time now we have been mentioning the potential problems that are likely to result from the switchover from 32bit(x86) Windows to 64bit(x64) Windows. Due to a multitude of issues, including Windows' memory management, the basic design of the PC architecture, and consumer support issues, there is no easy path for mass migration from 32bit Windows to 64bit Windows. As a result we have been expecting problems as consumers begin to make the messy transition.

We published the above mentioned guide on February 1st, expecting the fall/winter 2007 games to be the ones to push the 2GB addressing space limitation of Windows, and it turns out we were wrong. It turns out that two weeks after we published the above article, THQ published Supreme Commander, a RTS with a massive appetite for resources. It can be simultaneously GPU limited and CPU limited, which is why it's a standard benchmark here for our performance articles, it's also memory limited in more than one way: it's hitting the 2GB barrier of 32bit Windows.

An artifact of the design of 32bit processors and the 32bit API for Windows, the 2GB barrier is a cap on how much addressing space (related to but not equivalent to memory usage) a single application can use. This isn't a bug but rather the result of how hardware and software was created so many years ago, and while everyone has known this barrier will inevitably be hit, as we'll see there are several reasons why it can't simply be moved or bypassed. Meanwhile hitting it involves affected applications crashing for what can appear to be no good reason, and understanding why the 2GB barrier exists and what can be done will be important for resolving those crashes.

On a personal note, I am a semi-casual player of real time strategy(RTS) games and I've been playing Supreme Commander lately. This is a different kind of article, it's a record and the result of my own efforts to resolve why I was having crashing issues with Supreme Commander. With no intended disrespect towards THQ or the game's developers (Gas Powered Games) we could have not possibly asked for a better example of the 2GB barrier in action. It's exactly the experience we believe many people will have as they hit the 2GB barrier, mainly those power users who use large monolithic applications such as games or multimedia tools. This is an article on what the problem with the 2GB barrier is, what kind of experiences a user may expect when hitting it, and what can be done to fix it.

But before we get too far ahead of ourselves, let's discuss memory management in Windows. Understanding the problem with Supreme Commander requires understanding what the 2GB barrier is, why it's there, and what makes it so problematic.


A Primer on Windows’ Memory Management
POST A COMMENT

69 Comments

View All Comments

  • BabyBear - Thursday, July 12, 2007 - link


    This also happens with Flight Simulator X by the way.

    Over on Phil Taylor's blog he makes mention of it awhile back

    http://blogs.msdn.com/ptaylor/archive/2007/06/15/f...">Microsoft's Phil Taylors Blog

    There was also some talk that the June 07 DirectX Redist. seemed to 'help' with Out of Memory problems when using the /3gb switch.
    Reply
  • joetron2030 - Thursday, July 12, 2007 - link

    On "Page 4: A Case Study: Supreme Commander", in the paragraph discussing the first screen shot from Sysinternals' Process Explorer, you refer to the "Virtual Size" column as the "Private Size" column (which doesn't exist in the screen shot).

    Had me briefly confused.
    Reply
  • quanta - Thursday, July 12, 2007 - link

    Although Windows 2000/2003/Vista server versions aren't exactly designed for gaming, did anyone tested game titles on these server OS to see if these large address aware titles will use the Physical Address Extension feature? Reply
  • Ryan Smith - Thursday, July 12, 2007 - link

    The short answer is no.

    The longer answer is that due to a combination of chipset support, software support, performance, and driver support, it's not really usable outside of a server environment and shouldn't be used on a consumer system.
    Reply
  • brink - Thursday, July 12, 2007 - link

    Wouldn't matter, WinXP SP2 uses PAE, why would you want to install it on a server OS? Only 2003 is a server OS of the ones you mentioned, and I think only Windows 2003 Enterprise is the only 32-bit OS that has the ability to use more than 4GB of memory (8GB seems to be the limit for what modules/mobos are available right now) Reply
  • TA152H - Thursday, July 12, 2007 - link

    I'm just reading the remarks about the 386 pushing the memory from 1 MB, to 4 GB. It's patently untrue, unless you think the 386 succeeded the 8086, and not the 286. The 286 had 24 bit addressing (in 64K segments) for 16 MB of memory. This is not only what OS/2 used, but extended memory as well. So, it's not academic. Reply
  • Ryan Smith - Thursday, July 12, 2007 - link

    Just hearing the words "segmented memory" gives me flashbacks - and they're not the good kind. For this article we're talking strictly about flat addressing since I could write a small book on just segmented addressing, but I've updated the article to make this clear. Reply
  • TA152H - Thursday, July 12, 2007 - link

    Either way, you're using the wrong values. Even on the 8086 the memory was segmented. Actually, so was the 386, but it could handle segments up to 4 GB, so it wasn't important. So, using 1 MB and saying you're not referring to segmentation is inaccurate; that is segmented memory.

    Segmentation was not a bad thing, particularly back then. It saved memory space, and back in 1978 that was a big thing. Addresses were given in 16 bits, you didn't have to specify the rest, and the net result was you had shorter code. You would have to change the registers to point to the next segment from time to time, but overall it saved a lot of memory. You also could protect apps from each other, but that wasn't really used.

    I was an OS/2 developer, and it was a pain sometimes for sure. By the time the 286 came out, which I think was the best processor Intel ever made considering the timing, and the incredible capabilities it had over it's predecessor (the 8086, not the 80186 which was made in parallel with the 286), the extra memory saving was not worth the nuisance of having to deal with, at most, 64K segments. But it really wasn't possible for Intel to do it any other way, as I'll explain below.

    Motorola even added some external memory management unit that added segmentation, which today seems strange. It's widely viewed now as just a bad thing, but back then, it wasn't. Motorola really had a choice though, since the 68K was part 32-bit, and part 16-bit, and part 24-bit (addressing). Although the 286 was a more powerful processor than the 68000, it was pure 16-bit, except for the oddity of the 24-bit addressing. Consequently, allowing flat 24-bit addressing would not have been feasible. So, they dealt with it by just adding more segments. Considering the absolutely incredible improvement in this processor in just about every way, it was not such a bad tradeoff.
    Reply
  • BitJunkie - Friday, July 13, 2007 - link

    Hiya Bill. Reply
  • jay401 - Thursday, July 12, 2007 - link

    Just FYI, SupCom has already exhibited this problem and crashes once it breaks the 2GB barrier, which can happen easily in longer games with a high unit limit.

    This is mostly due to the poor efficiency in their code and models, something GPG (the developer, Gas Powered Games) reported could not easily be fixed in a patch because they basically have to re-render every unit in the game so they take up less memory. Due to this, it's likely to remain unfixed until the expansion pack (now a standalone game) Forged Alliance comes out in November, if it is fixed at all

    One forum member developed a way to increase the addressable memory to around 3GB on 32bit WinXP and Vista, so if you're running 4GB, this provides a sort of band-aid solution in the meantime.
    Reply

Log in

Don't have an account? Sign up now