iPeak Video/Audio Tests

The iPeak based Video/Audio benchmarks are designed around simulating media encoding and HTPC activities. These are basic benchmarks at this time but this section will be expanded once we start testing under Vista. Our change to a better performing dual core processor will assist us in maintaining a balance between the CPU and Storage systems during the trace file creation and benchmarking processes. These benchmarks are CPU intensive in nature but also require a balanced storage system with the ability at times to handle read and write requests simultaneously in a very efficient manner.

iPeak - Pure Hard Disk Performance

iPeak - Pure Hard Disk Performance

The AnyDVD benchmark is heavily weighted to write requests. The results show a common pattern in write intensive situations with the RAID 0 setups improving about 66% over their single drive counterparts. The 7K1000 scores particularly well in these write intensive benchmarks due to its areal density and large cache design.

The Nero Recode 2 benchmark is weighted to streaming read requests at the start of the test but is balanced by continuous write operations during the encoding process. This benchmark is one of the most demanding ones in our test suite with the disk being active the entire trace file with several 100% utilization peaks. The results show an almost 93% improvement in hard disk performance with RAID 0. We believe this is one of the few tests where RAID 0 on the desktop will make an actual difference in real-world performance.

The individual drive results surprised us as we expected the Hitachi with its 32 MB cache and high sustained transfer rates to score near the Raptors. However, it turns out after reviewing the trace file results it was obvious that the 7K1000 was hampered by its inability to process large data blocks in sequential order efficiently as it had a number of buffer overruns during the read portion of the tests. This indicates to us the drive firmware is probably tuned for non-sequential read/writes as the rest of our tests indicate. The 32 MB cache should have easily compensated for any potential large block issues in this test.

iPeak Game Installation Tests

Our iPeak based Game Installation benchmarks simply show the ability of the hard drive to write data as quickly as possible to the disc based upon the installation software instructions. As detailed in our iPeak setup description we installed the games from our source drive in order to eliminate the optical drive bottleneck. In separate application timing we witnessed basically the same percentage spread when installing the games via our DVD drive so these results are representative of actual installation performance.

iPeak - Pure Hard Disk Performance

iPeak - Pure Hard Disk Performance

The Raptors once again finish at or near the top in our gaming tests due to their rotational and random access speeds. Our 7K1000 drive finishes ahead of the other 7200rpm drives with a great deal of benefit going to the 32 MB cache and high sustained transfer rates. In the RAID 0 results we see the Raptor scores improving 38% in The Sims2 and 55% in BF2. The 7K1000 benefits greatly from RAID 0 in these tests with improvements of 50% in The Sims2 and 90% in BF2 with the Raptors once again showing their strength in gaming.

We need to remember these tests reflect pure hard drive performance and will be mitigated by the overall system platform as we will see in our application tests. These tests are basically designed around continual read/write requests that favor large cache sizes, properly tuned firmware, and high sustained transfer rates.

iPeak Game Play Tests

The iPeak based Game Play tests are centered on the benefits of having a hard disk that can load non-linear or sequential data files quickly without interrupting the flow of the game.

iPeak - Pure Hard Disk Performance

iPeak - Pure Hard Disk Performance

In game play the RAID 0 setups hold a 7% to 12% advantage in these benchmarks. We noticed in the trace files that performance improved only when the game levels changed. The best overall gaming performance with a SATA drive is still provided by the Raptors. However, considering the space, noise levels, and cost per GB advantages of the Hitachi drive, we are willing to change our recommendation for most users (though plenty will feel 1TB is too big and would rather go with a 500GB model).

iPeak General Performance Actual Application Performance
Comments Locked

48 Comments

View All Comments

  • userexists - Thursday, April 19, 2007 - link

    As I understand it, from previous articles, the limiting factor in gaming tests seems to be the CPU. I understand why you'd want to use an Opteron or Xeon system for benchmarking the access patterns -- the only people who care about those results are probably going to be running servers. But most people playing games aren't using server components. I'd love to see how the QX6800, for example, and some fast RAM affects gaming benchmarks under RAID-0 -- i.e. answer the question of whether the CPU bottleneck has been relieved. Probably not, but who knows until you test it, right?
  • Gary Key - Sunday, April 22, 2007 - link

    I will have some Intel benchmarks with a QX6700 up this week although I doubt the results will be that surprising. ;-)
  • cbuchach - Thursday, April 19, 2007 - link

    For all the arguing, NO ONE can say that RAID0 is overall slower. In most situations it is faster by varying degrees, maybe a percent or two or maybe more. For enthusiasts, the percent counts. Look at heatsinks or overclocking. Someone may spend an extra $50 for a better heatsink, for what, maybe an increased overlcock from 3300 MHz to 3400 MHz or spend lots of cash for a water cooling setup, or spend an extra $100 for slightly better RAM; the list goes on and on. For real enthusiasts, the extra 1-2% counts.

    (And as far as data loss goes, everyone should backing up all their nonrecoverable data data anyways, so that point is moot.)
  • tshen83 - Thursday, April 19, 2007 - link

    and don't even talk about performance, people who want performance will buy Raptors X or SCSI drives. this drive is for storage. RAID storage for cheap
  • tshen83 - Thursday, April 19, 2007 - link

    yes, backing up 2TB of data, with what? probably a RAID1(takes 4 drives to have 2TB) or RAID5(3 drives) of the same drives. so why not just use RAID1 or RAID5 in the beginning?
  • ncage - Thursday, April 19, 2007 - link

    I just wish hitachi would make this drive in something other than 1TB. I love hitachi hard drives and just which this awesome thing would come in like a 500GB or something like that.

    Ncage
  • Gary Key - Thursday, April 19, 2007 - link

    750GB drives will be available in May, the smaller capacities later this summer.
  • TomWomack - Thursday, April 19, 2007 - link

    What I'd be much more interested by is a review of performance for a pair of these drives in RAID1. RAID1 read speed ought to be the same as RAID0, and most disc-limited tasks are read-limited, whilst running drives in RAID1 seems a sensible reaction to the combined unreliability and cheapness of modern HDDs.

    [also you can break a RAID1 mirrored pair and grovel for deleted data on one of the drives while running the computer happily on the other, which I've found useful in the past]
  • Watson - Thursday, April 19, 2007 - link

    I would love to see if useful speed increases are actually available over multiple drives when splitting OS and cache files from applications vs. Raid 0. I have a Raid 0 on 10k Raptors in my machine, and they are very fast (obviously), but I have often wondered in a reinstall if I would be better off splitting the drives and what is put on them. Any thoughts?
  • yyrkoon - Thursday, April 19, 2007 - link

    If you are wondering if booting from this array would be slower, or faster, the chances are with RAID0 if anything, the array will boot slower vs a single Raptor. The reason behind this is simple: booting windows, HDDs benifit more from faster access times, and RAID0 will increase random access times. RAID1 on the other hand, could help some here, but it really depends on the controller(RAID1 paired with the right controller can actually decrease access times, but it will not be a huge difference).

    Now, all that being said, there is a reason why systems, where speed, and redundancy is crucial, people opt for RAID10. Obviously, there is the redundancy factor, but you can get the from RAID5 as well as speed if enough drives are used. Pretty much, you get the best of both worlds having a RAID10 array, faster access times, and throughput. This performance of course comes at a cost, you need a minimum of 4 HDDs, so for instance, using 4x 1TB Hitachi drives, we are talking in the balpark of $1600 for a bare minimum + controller capable of handling RAID10.

    When it is all said and done, unless your system is serving thousands of people data every hour of the day, heavily editing video, or some other similar task you do not need this kind of disk performance. Also, for the life of me, I can not see how making one large disk array, for your OS, and putting all your data on this array is going to help things either. Personally, I think it is much smarter, to use a single fast disk for the OS, and perhaps multiple drives for data, keeping everything seperate. As for using RAID, well, I can see an application for it, even in the home, but not for the OS.

    Think about it, what is so important about the OS that you need redundancy for it ? Nothing, plain and simple. Need a RAID array for video editing, or something else ? fine, get a third HDD for the OS, and keep the RAID0 array seperate. Same goes for RAID1, or RAID5, keep it seperate from the OS, and if something catostrophic does happen, chances are, it wont be on the data disks(however, nothing is ever set in stone). I have been using this technique since the mid 90's, and have had very little problems, and have lost next to zero data, that I needed. Not only this, but it does help to organize your data, so it is more easily found later on, but not as important.

    As for splitting OS/swap accross multiple drives, this is debatable. First, if all of your SATA channels are saturating what your system is capable of handeling, then no, but in theory it should help. I personally have noticed the bigest differences when transfering file locally, if I am transfering files from a PATA -> SATA drive, or vice versa. Two different interfaces, using two difference I/O channels.

    </two cents>

Log in

Don't have an account? Sign up now