ASUS

We start our silent card roundup by looking at some cards by ASUS, a company that has impressed us with its quality in the past. For this roundup, ASUS has submitted four silent NVIDIA cards and a silent ATI card.



First we have the ASUS NVIDIA GeForce EN7800 GT Top Silent, a powerful card considering its silent design. As its name implies, the EN7800GT uses NVIDIA's 7800 GT GPU. This is an interesting card because, aside from its high performance GPU, its heatsink is designed with an arm extending from the side of the card that has the ability to swivel out 90 degrees so that air being pulled from the CPU fan can provide extra cooling. The arm can also remain closed if space is an issue, and the card still works fine. This is also the most powerful silent card we have for this review, and it comes with a slightly higher factory clock than a standard 7800 GT (420MHz/1.24GHz).


Second, we have the ASUS NVIDIA GeForce 7600 GS Silent 512. As the name suggests, this card has 512 MB memory instead of the standard 256 MB and is based on NVIDIA's 7600 GS GPU. However, the memory clock speed is set significantly lower than the standard 256 MB 7600 GS (540MHz vs. the standard 800MHz). This card as well as the 256 MB version have metal heat sinks that cover the front of the card, and curl over the top and down the back about an inch.


The ASUS NVIDIA GeForce 7600 GS Silent is the 256MB version of the above card. It's factory clocked the same as a standard 7600 GS, with a 400MHz core and an 800MHz memory clock speed. Both the 512 MB and 256 MB versions of this card look exactly the same. It is possible that when Windows Vista becomes available, the added memory of the 512MB version will prove useful, but at present there's little reason to recommend having additional RAM at a slower clock speed.


The ASUS EN6600 GT Silencer is very similar in design to the EN7800 GT Top Silent, with a rotating-arm heat sink that extends from the side of the card. The EN6600 GT's heat sink is a bit smaller and lighter than the EN7800 GT, which makes sense given the 6600's smaller size. Also similarly to the EN7800 GT Top Silent, this is the only card of its kind (6600 GT) in this review. On the NVIDIA side, our main focus will be on 7600 and 7300 cards, and for ATI the X1300 and X1600 offerings.


And lastly, we have an ATI offering by ASUS: the Radeon EAX1600 XT Silent. This is our most powerful ATI card for this review, and this particular X1600 XT has an interesting heat sink design. There is a small black heat sink on the face of the card just covering the processor, and two metal heatpipes extend around the end and to the back of the card, which holds a much larger heat sink. We will list the current prices for these as well as the rest of our cards in the "Cards Summary and Prices" section later on.

Index Gigabyte
POST A COMMENT

49 Comments

View All Comments

  • yyrkoon - Thursday, August 31, 2006 - link

    If its silly, why even bother replying . . . No need to go out of your way to be a jerk. Reply
  • nullpointerus - Friday, September 01, 2006 - link

    Jerks don't take the time to apologize. As for why I apologized, I felt badly for responding in kind. I was belittling people who felt the need to belittle the site without taking the trouble to think their arguments through. Apparently that put some kind of chip on your shoulder such that you felt the need to attack me after I'd already apologized. Reply
  • DerekWilson - Friday, September 01, 2006 - link

    maybe we can take a different angle as the standard reasoning has been rolled out already ...

    if we decide to test with a system that "matches" the graphics card, we are making a decision about what is reasonable for either a specific level of performance or price point. By making such a decision, we limit ourselves -- for instance, in this review we may have chosen a system to match a 7600 GS. But maybe it's too under powered for a 7600 GT, or perhaps its too overpriced for a 7300 GS.

    we absolutely can't test every card with every processor and every memory configuration on every chipset for every review.

    en lieu of choosing one system that is supposed to be a "one size fits all", we can remove the system from consideration by choosing the highest end configuration possible.

    when a graphics card peforms better in our system, we know it is capable of better performance in any system. this is true in almost every case.

    this does put a burden on the reader to understand the limitations of his or her own system -- i.e., will the fact that the 7600 GT performs higher than 7600 GS expose a CPU limitation on the system the reader is building/upgrading.

    this question can be answered in a couple ways.

    with game tests, if you can borrow a high end graphics card and see where the cpu limitation falls at something like 800x600 without aa and af, you'll know where the upper limit on framerate is based on the CPU. thus a decision can be made about the best fit for a card.

    if you can't borrow a higher end card, you can turn all the graphics settings down as far as possible and run at 640x480 or lower if possible (does anything aside from the chronicles of riddick still support 320x240?). this isn't ideal, but even on a low end card you can get a pretty good idea of whether or not there will be a cpu limitation entering into the mix.

    when you know what the cpu limit of your system is, pick the resolution you want to run, and find a card that gives you a number just over this limit. this card is the ideal fit for your system at your resolution. it will deliver the performance your cpu will ask for.

    I know its complicated, but its much better than the can of worms we'd open if we went in another direction.

    In GPU reviews meant to demonstrate the capabilities of a graphics card, we will not add unnecessary bottlenecks to the system.
    Reply
  • nullpointerus - Friday, September 01, 2006 - link

    You need a form letter, or something. Maybe you could put up a short page entitled Why We Test this Way and link to it on the front page of each article. Reply
  • nullpointerus - Thursday, August 31, 2006 - link

    Hmm...that last paragraph came out a little too harsh. I apologize in advance if I've offended anyone. I still think the points are valid, though. Reply
  • JarredWalton - Thursday, August 31, 2006 - link

    If you look at the performance difference between an E6400 stock and 3.0 GHz OC in our http://www.anandtech.com/systems/showdoc.aspx?i=28...">PC Club system review, you will see that it makes virtually no difference in performance even with a 7900 GT. All of these GPUs are the bottleneck in gaming, but we use a higher-end (relatively speaking) CPU just to make sure. Reply
  • imaheadcase - Thursday, August 31, 2006 - link

    I disagree 800x600 is great for sniping, i play on a 9700 Pro and normally switch between 800x600 and 1024x768 and like 800x600 better on large maps. It brings the objects "bigger" to me and lets me get better accuracy.

    Even if i had a 7900GT i would prob not go higher than 1024x768. Don't know why people play at higher rez, makes everything so tiny. Squinting to play a game is annoying and distracting from gameplay :D
    Reply
  • Josh7289 - Thursday, August 31, 2006 - link

    People who have larger monitors have to use higher resolutions to keep things from getting too large, and to make good use of all that real estate, especially when it's an LCD (native resolution).

    For example, a 17" CRT is best run at 1024 x 768 for games, while a 21" or so LCD is best run at 1600 x 1200 or 1680 x 1050, depending on its native resolution.
    Reply
  • Olaf van der Spek - Thursday, August 31, 2006 - link

    What do you mean with 'too large'?
    In games it's not like in Windows where objects get smaller if you increase the resolution.
    Reply
  • DerekWilson - Thursday, August 31, 2006 - link

    this is correct (except with user interfaces for some reason -- and there the exception is warcraft 3). thanks Olaf.

    lower resolution will give you much less accuracy -- larger pixels in the same screen area decrease detail.

    the extreme example is if you have a 4x3 grid and you need to snipe someone -- his head has to be in the center of one of the 12 blocks you have to aim through to even be able to hit him. The smaller these blocks are, the more pixels fit into the head, the more capable you will be of sniping.
    Reply

Log in

Don't have an account? Sign up now