Introduction

Wide Dynamic Execution, Advanced Digital Media Boost, Smart Memory Access and Advanced Smart Cache; those are the technologies that according to the marketing people at Intel enable Intel to build the high performance, low energy CPUs using the new Core architecture.

Of course, as an AnandTech Reader, you couldn't care less about which Hyper Super Advanced Label the marketing folks glue on their CPUs. "Extend the digital lifestyle by combining robust performance with low power consumption" could have been another marketing claim for the new Core architecture, but VIA already cornered that sentence for its C7 CPUs. The marketing slogans for Intel's Core and VIA's C7 are almost the same; the architectures are however vastly different.

No, let us find out what is really behind all this marketing hyper-talk, and preferably compare it with the AMD "K8" (Athlon 64, Opteron) architecture of Intel's NetBurst and Pentium M processors. That is what this article is all about. We talked to Jack Doweck, the engineer who designed the completely new Memory Reorder Buffer and Memory disambiguation system. Jack Doweck is one of the Intel Israel Development Center (IDC) architects.

The Intel "P8"

Intel marketing states that Core is a blend of P-M techniques and NetBurst architecture. However, Core is clearly a descendant of the Pentium Pro, or the P6 architecture. It is very hard to find anything "Pentium 4" or "NetBurst" in the Core architecture. While talking to Jack Doweck, it became clear that only the prefetching was inspired by experiences with the Pentium 4. Everything else is an evolution of "Yonah" (Core Duo), which was itself an improvement of Dothan and Banias. Those CPUs inherited the bus of the Pentium 4, but are still clearly children of the hugely successful P6 architecture. In a sense, you could call Core the "P8" architecture, with Banias/Dothan being based on the "P7" architecture. (Note that the architecture of Banias/Dothan was never given an official name, so we will refer to it as "P-M" for simplicity's sake.)

Of course this doesn't mean that Intel's engineers just bolted a few functional units and a few decoders on Yonah and called it a day. Jack told us that Woodcrest/Conroe/Merom are indeed based on Yonah, but that almost 80% of both the architecture and circuit design had to be redone.

CPU architecture in a nutshell

For those of you who are not so familiar with CPUs, we'll start with a crash course in CPU architectures. To understand CPU design, you must first look at the instructions that are sent to the CPU, and thus we start with the software.

Typical x86 software code consists of about 50% stores and loads, and there are about twice as many loads as there are stores. Of the remainder, about 15 to 20% of the instructions are branches (If, Then, Else), and the rest are mostly "ADD" (addition) and "MUL" (multiply) instructions. Only a very small percentage of code consists of more exotic instructions such as DIV (divisions), SQRT (square root), or other higher order math (e.g. trigonometric functions).

All these instructions are processed in a typical "Von Neuman" pipeline: Fetch, Decode, Operand Fetch, Execute, Retire.

Instructions are fetched based on the instruction pointer register, and initially they are nothing but long bit patterns to the CPU. It's only after the CPU starts decoding the bits that the instructions "start to make sense" to the CPU. Addresses and opcodes are decoded out of the instructions, and the addresses are used for the next step: the operand fetch. As you don't want the CPU to perform calculations with the addresses but rather on the content of these addresses - the "operands" - the CPU has to fetch the right data out of the data cache. Once these operands are put in the registers, the ALU is steered by the "opcode" (which has been decoded) to perform the right calculation on the operands in the registers.

The results are written to the architecture register file, the registers which can be used by the compiler. The results must also be written to the caches and the main memory, so that these are also up to date. That is the final phase, the retire phase. That is the basically how processing works in all CPUs.

The main challenge for the CPU designer today is the average memory latency the CPU sees. A Pentium 4 3.6 GHz with DDR-400 runs no less than 18 times faster than the base clock of the RAM (200 MHz). Every cycle the memory is being accessed, a minimum of 18 cycles pass on the CPU. At the same time, it takes several cycles to even send a request, and it takes a few cycles to send a request back. (We discussed this in the past in our overview of memory technology article.) The result is that wait times of 200 to 300 cycles are not uncommon on the Pentium 4. The goal of CPU cache is to avoid accessing RAM, but even if the CPU only has to go to system memory 4% of the time, that 4% of the time can lower performance significantly.

Memory Subsystem
Comments Locked

87 Comments

View All Comments

  • spinportal - Monday, May 1, 2006 - link

    Definitely a great treasure of an article to find on a monday morning detailing the Core architecture that the world is drooling for in June. I wonder what kind of simulation micro-arch software Intel and AMD use, as I remember the days doing my Masters, playing with Intel's Hypercube simulator (grav sim, fish & shark AI sim) and writing my own macro level visual-cpu execution simulator.
  • JarredWalton - Monday, May 1, 2006 - link

    I won't say it's a quick fix, but just as Core is a derivative of P6, AMD could potentially just get some better OoO capabilities into K8 and get some serious performance improvements. Their current inability to move loads forward much (if at all) makes them even more dependent on RAM latency. You could even say that they *needed* the IMC to improve performance, but still L2 latency is far better than RAM latency, and cutting down L2 latency hit from 12 cycles to say 6 cycles (if you can do the load 6 cycles early) would have to improve performance. Loads happen "all the time" in ASM, so optimizing their performance can pay huge dividends.

    I'm going to catch flak for this, but basically Intel has more elegant designs than AMD in several areas. It comes from throwing billions of dollars at the problems. Better L1 cache? Yup - 8-way vs. 2-way is pretty substantial; 256-bit vs. 128-bit is also substantial. Better specialization of hardware? Yeah, I have to give them that as well: rather than just using three ALUs, they often take the path of having a few faster ALUs to handle the common cases.

    Really, the only reason AMD was able to catch (and exceed) Intel performance was because Intel got hung up on clock speeds. They basically let marketing dictate chip design to engineering - which is never good, IMO, at least not in the long run. Even NetBurst still has some very interesting design features (double-pumped ALUs, specialization of functional units, trace cache), and if nothing else it served as a good lesson on how far you can push clock speeds and pipeline lengths before you start encountering some serious problems. I would have loved to see Northwood tweaked for 90nm and 65nm, personally - 31+8 pipeline stages was just hubris, but 20+8 with some other tweaks could have been interesting.

    Here's hoping AMD can make some real improvements to their chips sooner rather than later. Intel Core is looking very strong right now, and I would rather have close competition than a 20% margin of victory like we've been seeing lately. (First with AMD K8 beating NetBurst, and now it looks like Conroe is going to turn the tables.)
  • Regs - Wednesday, June 7, 2006 - link

    Okcourse you will catch flack. It's an opinion.

    My opinion is Intel is more innovative or even compromising
    while AMD is more intuitive.
  • Spoonbender - Monday, May 1, 2006 - link

    "8-way 32kb * 2 L1 should in theory exceed the hitrate of K8's 2-way 64kb * 2 L1."
    It should? I'd like to see some sources on that. From what I've seen, the 64KB cache still has an advantage there, with a hitrate not much below that of a 64KB/8-way.

    Also, I disagree that Intel's CPU's are generally more elegant. First, their L1 cache isn't neccesarily "better" (see above). Of course, the 256 vs 128 bit bandwidth is a big factor, however.

    Specialization in hardware? Is that elegant? I'd say there's a certain elegance in making a general solution as well, as opposed to specializing everything to the point where you're screwed if the code you have to execute isn't 100% optimal.

    And I definitely think AMD's distributed reservation stations are more elegant than the central one used by Intel. Same goes with the usual HyperTransport vs FSB story.
    There are a few other really elegant features of the K8 that I haven't seen duplicated in Core.

    So overall, I don't see the big deal with "elegance". Both architectures have plenty of elegant features. However, the K8 is definitely aging, and will have problems keeping up with Conroe.

    But then again, the K8 die is tiny in comparison. They've got plenty of space for improvements.

    Really looking forward to
    1) Being able to get a Merom-powered laptop, and
    2) Seeing what AMD comes up with next year.
  • IntelUser2000 - Monday, May 1, 2006 - link

    quote:

    But then again, the K8 die is tiny in comparison. They've got plenty of space for improvements.


    Tiny?? 199mm2 for 2x1MB cache K8 at 90nm is tiny?? Ok there. Conroe with 4MB cache is around 140mm2 die size.

    http://www.aceshardware.com/forums/read_post.jsp?i...">http://www.aceshardware.com/forums/read_post.jsp?i...

    Even compairing against Intel's SRAM size for 90nm and 65nm comparison, at 90nm, Conroe would be 250mm2. In Prescott, 1MB L2 cache takes 16-17mm2. 250mm2-32mm2=218mm2.

    And Intel didn't to shrinks that are relative to SRAM sizes. In comparison for Cedarmill and Prescott 2M, which are same cores essentially.

    Prescott 2M: 135mm2
    Cedarmill: 81mm2

    Only difference being process size, the comparison is 0.6.

    Conroe at 90nm would have been 233mm2, which is compact as X2 per core.
  • Spoonbender - Tuesday, May 2, 2006 - link

    Okay, I guess I should have said that at the same process size, it is tiny. I meant that when AMD gets around to migrating to 65nk as well, they'll have a smaller core (assuming no big changes to the chip), which gives them plenty (some?) of room for improvement.

    [quote]
    Conroe at 90nm would have been 233mm2, which is compact as X2 per core.
    [/quote]
    But in absolute terms, still bigger than an Athlon X2. Which means AMD has some space for improvement. That was my only point. I guess I should have been more clear. ;)
  • coldpower27 - Wednesday, May 3, 2006 - link

    Yes, if using the 0.6 Factor for Brisbane the 65nm Athlon 64x2 it will be around 132mm2 assuming no changes over the 220mm2 Windsor DDR2 Athlon64x2. 199mm2 is only for Toledo which is reaching end of life and can no longer be used as a comparison. And it's irrelevent to compare to Conroe on what it would be on 90nm as it never was built on 90nm technology to begin with.

    Conroe is looking to be ~14x mm2 with the x=0-9. Yes if you can compare them at the same process nodes considering the Conroe will only be competing with the 65nm Dual Core Athlon 64x2 in the second half of it's lifetime.
  • JumpingJack - Tuesday, May 2, 2006 - link

    Nice analysis, the current AMD X2 dual cores are about 1.5 to 2.0 X the size of Intel dual cores (on 65 nm), this is where 65 nm adds such a benefit. Conroe will come in around 140 mm^2 as you said. Yohna at 2 meg shared is 90 mm^2, less than 1/2 the X2.

    Right now, cost wise in Si realestate AMD is more expensive.
  • BitByBit - Monday, May 1, 2006 - link

    quote:

    From what I've seen, the 64KB cache still has an advantage there, with a hitrate not much below that of a 64KB/8-way.


    Here is a good article on processor cache:
    http://en.wikipedia.org/wiki/CPU_cache">http://en.wikipedia.org/wiki/CPU_cache

    If you scroll down to the miss-rate vs. cache size graph, you can see that an 8-way 64Kb cache has a miss-rate less than one-tenth the miss-rate of a 2-way 64Kb cache.

    An 8-way 64Kb * 2 L1 would probably be too difficult to implement, given the time it would take to search. However, according to the relationships shown by that graph, increasing the Athlon's L1 associativity to 4-ways could yield a nice boost in hitrate and consequently performance.


  • Spoonbender - Monday, May 1, 2006 - link

    And of course, we all know wikipedia is the ultimate source of all truth and knowledge... ;)

    Keep in mind that this graph only shows the Spec2000 benchmark (and only the integer section, at that). That's far from being representative of all code.

    According to http://www.amazon.com/gp/product/1558605967/002-28...">http://www.amazon.com/gp/product/155860...-2818646... which, in my experience is pretty damn good, the missrates are as follows *in general*:

    32KB, 8-way: 0.037
    64KB, 2-way: 0.031
    64KB 8-way: 0.029

    But yeah, of course improving the Athlon's cache would help. But it's not the first place I'd look to optimize. For one thing, making it more complex would, as seen above, not yield a significantly lower hitrate, but it would slow the cache down, either forcing them to increase its latency, or limiting the frequency potential of the cpu as a whole. The cache bandwidth might be a better candidate for improvement. Or some of the actual cpu logic. Or the L2 cache size. I think the L1 cache is pretty healthy on the K8 already.

Log in

Don't have an account? Sign up now