Rise of the Tomb Raider (1080p, 4K)

One of the newest games in the gaming benchmark suite is Rise of the Tomb Raider (RoTR), developed by Crystal Dynamics, and the sequel to the popular Tomb Raider which was loved for its automated benchmark mode. But don’t let that fool you: the benchmark mode in RoTR is very much different this time around.

Visually, the previous Tomb Raider pushed realism to the limits with features such as TressFX, and the new RoTR goes one stage further when it comes to graphics fidelity. This leads to an interesting set of requirements in hardware: some sections of the game are typically GPU limited, whereas others with a lot of long-range physics can be CPU limited, depending on how the driver can translate the DirectX 12 workload.

Where the old game had one benchmark scene, the new game has three different scenes with different requirements: Spine of the Mountain (1-Valley), Prophet’s Tomb (2-Prophet) and Geothermal Valley (3-Mountain) - and we test all three (and yes, I need to relabel them - I got them wrong when I set up the tests). These are three scenes designed to be taken from the game, but it has been noted that scenes like 2-Prophet shown in the benchmark can be the most CPU limited elements of that entire level, and the scene shown is only a small portion of that level. Because of this, we report the results for each scene on each graphics card separately.

 

Graphics options for RoTR are similar to other games in this type, offering some presets or allowing the user to configure texture quality, anisotropic filter levels, shadow quality, soft shadows, occlusion, depth of field, tessellation, reflections, foliage, bloom, and features like PureHair which updates on TressFX in the previous game.

Again, we test at 1920x1080 and 4K using our native 4K displays. At 1080p we run the High preset, while at 4K we use the Medium preset which still takes a sizable hit in frame rate.

It is worth noting that RoTR is a little different to our other benchmarks in that it keeps its graphics settings in the registry rather than a standard ini file, and unlike the previous TR game the benchmark cannot be called from the command-line. Nonetheless we scripted around these issues to automate the benchmark four times and parse the results. From the frame time data, we report the averages, 99th percentiles, and our time under analysis.

All of our benchmark results can also be found in our benchmark engine, Bench.

#1 Geothermal Valley Spine of the Mountain

MSI GTX 1080 Gaming 8G Performance


1080p

4K

ASUS GTX 1060 Strix 6G Performance


1080p

4K

Sapphire Nitro R9 Fury 4G Performance


1080p

4K

Sapphire Nitro RX 480 8G Performance


1080p

4K

#2 Prophet’s Tomb

MSI GTX 1080 Gaming 8G Performance


1080p

4K

ASUS GTX 1060 Strix 6G Performance


1080p

4K

Sapphire Nitro R9 Fury 4G Performance


1080p

4K

Sapphire Nitro RX 480 8G Performance


1080p

4K

#3 Spine of the Mountain Geothermal Valley

MSI GTX 1080 Gaming 8G Performance


1080p

4K

ASUS GTX 1060 Strix 6G Performance


1080p

4K

Sapphire Nitro R9 Fury 4G Performance


1080p

4K

Sapphire Nitro RX 480 8G Performance


1080p

The 4K

It's clear from these results that the 1950X is not the best gaming chip when in its default mode.

CPU Gaming Performance: Shadow of Mordor (1080p, 4K) CPU Gaming Performance: Rocket League (1080p, 4K)
Comments Locked

347 Comments

View All Comments

  • mapesdhs - Friday, August 11, 2017 - link

    And consoles are on the verge of moving to many-cores main CPUs. The inevitable dev change will spill over into PC gaming.
  • RoboJ1M - Friday, August 11, 2017 - link

    On the verge?
    All major consoles have had a greater core count than consumer CPUs, not to mention complex memory architectures, since, what, 2005?
    One suspects the PC market has been benefiting from this for quite some time.
  • RoboJ1M - Friday, August 11, 2017 - link

    Specifically, the 360 had 3 general purpose CPU cores
    And the PS3 had one general purpose CPU core and 7 short pipeline coprocessors that could only read and write to their caches. They had to be fed by the CPU core.
    The 360 had unified program and graphics ram (still not common on PC!)
    As well as it's large high speed cache.
    The PS3 had septate program and video ram.
    The Xbox one and PS4 were super boring pcs in boxes. But they did have 8 core CPUs. The x1x is interesting. It's got unified ram that runs at ludicrous speed. Sadly it will only be used for running games in 1800p to 2160p at 30 to 60 FPS :(
  • mlambert890 - Saturday, August 12, 2017 - link

    Why do people constantly assume this is purely time/market economics?

    Not everything can *be* parallelized. Do people really not get that? It isn't just developers targeting a market. There are tasks that *can't be parallelized* because of the practical reality of dependencies. Executing ahead and out of order can only go so far before you have an inverse effect. Everyone could have 40 core CPUs... It doesn't mean that *gaming workloads* will be able to scale out that well.

    The work that lends itself best to parallelization is the rendering pipeline and that's already entirely on the GPU (which is already massively parallel)
  • Magichands8 - Thursday, August 10, 2017 - link

    I think what AMD did here though is fantastic. In my mind, creating a switch to change modes vastly adds to the value of the chip. I can now maximize performance based upon workload and software profile and that brings me closer to having the best of both worlds from one CPU.
  • Notmyusualid - Sunday, August 13, 2017 - link

    @ rtho782

    I agree it is a mess, and also, it is not AMDs fault.

    I've have a 14c/28t Broadwell chip for over a year now, and I cannot launch Tomb Raider with HT on, nor GTA5. But most s/w is indifferent to the amount of cores presented to them, it would seem to me.
  • BrokenCrayons - Thursday, August 10, 2017 - link

    Great review but the word "traditional" is used heavily. Given the short lifespan of computer parts and the nature of consumer electronics, I'd suggest that there isn't enough time or emotional attachment to establish a tradition of any sort. Motherboards sockets and market segments, for instance, might be better described in other ways unless it's becoming traditional in the review business to call older product designs traditional. :)
  • mkozakewich - Monday, August 14, 2017 - link

    Oh man, but we'll still gnash our teeth at our broken tech traditions!
  • lefty2 - Thursday, August 10, 2017 - link

    It's pretty useless measuring power alone. You need to measure efficiency (performance /watt).
    So yeah, a 16 core CPU draws more power than a 10 core, but it also probably doing a lot more work.
  • Diji1 - Thursday, August 10, 2017 - link

    Er why don't you just do it yourself, they've already given you the numbers.

Log in

Don't have an account? Sign up now